Long-term improvement in mdx cardiomyopathy after therapy with peptide-conjugated morpholino oligomers.
نویسندگان
چکیده
AIMS The cardiomyopathy found in Duchenne muscular dystrophy (DMD) is responsible for death due to heart failure in approximately 30% of patients and additionally contributes to many DMD morbidities. Strategies to bypass DMD-causing mutations to allow an increase in body-wide dystrophin have proved promising, but increasing cardiac dystrophin continues to be challenging. The purpose of this study was to determine if therapeutic restoration of cardiac dystrophin improved the significant cardiac hypertrophy and diastolic dysfunction identified in X-linked muscular dystrophy (mdx) dystrophin-null mouse due to a truncation mutation over time after treatment. METHODS AND RESULTS Mice lacking dystrophin due to a truncation mutation (mdx) were given an arginine-rich, cell-penetrating, peptide-conjugated phosphorodiamidate morpholino oligomer (PPMO) that delivered a splice-switching oligonucleotide-mediated exon skipping therapy to restore dystrophin in mdx mice before the development of detectable cardiomyopathy. PPMO successfully restored cardiac dystrophin expression, preserved cardiac sarcolemma integrity, and prevented the development of cardiac pathology that develops in mdx-null mice over time. By echocardiography and Doppler analysis of the mitral valve, we identified that PPMO treatment of mdx mice prevented the cardiac hypertrophy and diastolic dysfunction identified in sham-treated, age-matched mdx mice, characteristic of DMD patients early in the disease process, in as little as 5-6 weeks after the initiation of treatment. Surprisingly, despite the short-term replacement of cardiac dystrophin (<1% present after 12 weeks by immunodetection), PPMO therapy also provided a durable cardiac improvement in cardiac hypertrophy and diastolic dysfunction for up to 7 months after the initiation of treatment. CONCLUSION These results demonstrate for the first time that PPMO-mediated exon skipping therapy early in the course of DMD may effectively prevent or slow down associated cardiac hypertrophy and diastolic dysfunction with significant long-term impact.
منابع مشابه
Sustained dystrophin expression induced by peptide-conjugated morpholino oligomers in the muscles of mdx mice.
Cell-penetrating peptides (CPPs), containing arginine (R), 6-aminohexanoic acid (X), and/or beta-alanine (B) conjugated to phosphorodiamidate morpholino oligomers (PMOs), enhance their delivery in cell culture. In this study, the potency, functional biodistribution, and toxicity of these conjugates were evaluated in vivo, in EGFP-654 transgenic mice that ubiquitously express the aberrantly spli...
متن کاملPrevention of dystrophic pathology in severely affected dystrophin/utrophin-deficient mice by morpholino-oligomer-mediated exon-skipping.
Duchenne muscular dystrophy (DMD) is a severe neuromuscular disorder caused by mutations in the dystrophin gene that result in the absence of functional protein. Antisense-mediated exon-skipping is one of the most promising approaches for the treatment of DMD because of its capacity to correct the reading frame and restore dystrophin expression, which has been demonstrated in vitro and in vivo....
متن کاملCell-penetrating peptide-conjugated antisense oligonucleotides restore systemic muscle and cardiac dystrophin expression and function.
Antisense oligonucleotides (AOs) have the potential to induce functional dystrophin protein expression via exon skipping by restoring in-frame transcripts in the majority of patients suffering from Duchenne muscular dystrophy (DMD). AOs of morpholino phosphoroamidate (PMO) and 2'-O-methyl phosphorothioate RNA (2'Ome RNA) chemistry have been shown to restore dystrophin expression in skeletal mus...
متن کاملContext Dependent Effects of Chimeric Peptide Morpholino Conjugates Contribute to Dystrophin Exon-skipping Efficiency
We have recently reported that cell-penetrating peptides (CPPs) and novel chimeric peptides containing CPP (referred as B peptide) and muscle-targeting peptide (referred as MSP) motifs significantly improve the systemic exon-skipping activity of morpholino phosphorodiamidate oligomers (PMOs) in dystrophin-deficient mdx mice. In the present study, the general mechanistic significance of the chim...
متن کاملDual Myostatin and Dystrophin Exon Skipping by Morpholino Nucleic Acid Oligomers Conjugated to a Cell-penetrating Peptide Is a Promising Therapeutic Strategy for the Treatment of Duchenne Muscular Dystrophy
The knockdown of myostatin, a negative regulator of skeletal muscle mass may have important implications in disease conditions accompanied by muscle mass loss like cancer, HIV/AIDS, sarcopenia, muscle atrophy, and Duchenne muscular dystrophy (DMD). In DMD patients, where major muscle loss has occurred due to a lack of dystrophin, the therapeutic restoration of dystrophin expression alone in old...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Cardiovascular research
دوره 85 3 شماره
صفحات -
تاریخ انتشار 2010